34 research outputs found

    Investigation of neutral beam arc chamber failure during helium operations at DIII-D

    No full text
    The Neutral Beam system on the DIII-D tokamak consists of eight ion sources using the Common Long Pulse Source (CLPS) design. During helium operation, desired for research regarding the ITER pre-nuclear phase, it has been observed that the ion source arc chamber performance steadily deteriorates, eventually failing due to electrical breakdown across the insulation. This poster presents the details and preliminary results of an experimental effort to replicate the problem in a bench top ion source with similar plasma parameters. The initial aim of the experiment is to test the hypothesis that during helium operation there is increased tungsten evaporation and sputtering due to ion bombardment of the hot cathodes, leading to the deposition of filament material on the insulation and subsequent short circuits. Ultimately the aim of the experiment is to find methods to ameliorate the problems associated with helium operation at DIII-D

    Experimental studies of the arc chamber short circuit failure mechanism on the DIII-D neutral beam system

    No full text
    Here we report on efforts to improve performance and longevity of the Neutral Beam Injection (NBI) system by initiating a R&D program aimed at studying the most common failure mechanism for the ion sources. To this end a filament driven plasma chamber has been constructed with plasma parameters similar to the arc chamber of NBI ion sources. A preliminary report of an investigation into the most common failure is presented here: The failure mechanism observed during helium operations on DIII-D is the result of electrical breakdown of the insulation material that separates the filament plates from the anode. The fault is reproduced in a table top experiment analogous to the DIII-D NBI ion source in key parameters and proposals for amelioration of the issue are discussed
    corecore